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The human brain is capable of using statistical regularities to predict future inputs. In the real world, such inputs typically comprise a
collection of objects (e.g. a forest constitutes numerous trees). The present study aimed to investigate whether perceptual anticipation
relies on lower-level or higher-level information. Specifically, we examined whether the human brain anticipates each object in a
scene individually or anticipates the scene as a whole. To explore this issue, we first trained participants to associate co-occurring
objects within fixed spatial arrangements. Meanwhile, participants implicitly learned temporal regularities between these displays.
We then tested how spatial and temporal violations of the structure modulated behavior and neural activity in the visual system
using fMRI. We found that participants only showed a behavioral advantage of temporal regularities when the displays conformed to
their previously learned spatial structure, demonstrating that humans form configuration-specific temporal expectations instead of
predicting individual objects. Similarly, we found suppression of neural responses for temporally expected compared with temporally
unexpected objects in lateral occipital cortex only when the objects were embedded within expected configurations. Overall, our
findings indicate that humans form expectations about object configurations, demonstrating the prioritization of higher-level over
lower-level information in temporal expectation.
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Introduction
A growing body of research has shown that the brain does not pas-
sively wait to be activated by sensory inputs but instead actively
anticipates future input (Clark 2013). This process is achieved
through continuous extraction of statistical regularities from the
visual world, which in turn facilitate perceptual processing and
object categorization (Biederman et al. 1982; Chun and Jiang 1999;
Fiser and Aslin 2001; Green and Hummel 2006; Boettcher et al.
2020).

Whereas most studies on sensory expectation have focused
on investigating how the brain predicts single objects (Meyer and
Olson 2011; Manahova et al. 2018; Richter et al. 2018), objects
rarely occur in isolation in the real world. They appear along-
side other objects within specific spatial arrangements, posing a
challenge for the visual system to understand complex cluttered
visual scenes. For example, a keyboard and a mouse pad posi-
tioned in front of a monitor may be perceived as a single “desktop”
percept, or a group of trees may be perceived as a “forest.” Previous
studies have shown that the visual system is sensitive to the
familiar spatial arrangement of objects (Gronau et al. 2008; Kaiser
and Peelen 2018). Furthermore, studies have demonstrated that
statistical learning can extract the co-occurrence statistics of
stimuli to represent multiple objects as a higher-order represen-
tation (Fiser and Aslin 2001, 2005; Orbán et al. 2008; Lengyel et al.
2019). Such hierarchical processing allows the same set of objects
to be described both at the level of the whole (forest) and at

the level of the individual parts (trees). These findings raise the
question of at which level of the stimulus hierarchy temporal
expectation takes place, specifically, whether the expectation of
future input represents the collection of objects as a higher-order
representation of the whole, or whether local information about
individual items is predicted.

In the present study, we set out to investigate this issue. To this
end, we exposed participants to 8 structured sets of 4 co-occurring
objects. Initially, these objects were unrelated to each other and
were learned by the participants in a fixed spatial arrangement.
Based on prior research (Fiser and Aslin 2001; Orbán et al. 2008;
Stansbury et al. 2013), we expected participants to learn the statis-
tical regularities of the spatial arrangement and represent these
objects as a scene-like representation. We then presented the dis-
plays in a predetermined sequence (Fig. 1) and manipulated the
temporal and spatial aspects of the displays while recording the
BOLD response. Specifically, keeping the temporal aspects at first
constant, we introduced manipulations to spatial aspects so that
familiar displays were followed by either (i) “familiar” displays;
(ii) “mixed” displays (half of the items are from the temporally
expected display, the other half from a different familiar display);
or (iii) “shuffled” displays (items of the familiar display but at
shuffled positions). To further manipulate the temporal aspect,
we presented these displays at either a temporally expected or
unexpected sequence position. We capitalized on the concept
of expectation suppression to investigate the brain regions that
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Fig. 1. A) Example stimuli. For each participant, 32 object images were (randomly) grouped into 8 specific displays. These displays were then arranged in
a specific temporal sequence; thus, each display could predict the identity of the next. Note that each object is visualized here with an additional index
which was not presented in the experiment. The displays are labeled as letters (from A to H), while the positions of objects are labeled as numbers (from
1 to 4). B) The 3-by-2 factorial design of an example target display that following the display F in a sequence. The target display could be familiar, mixed,
or shuffled, and it could also be temporally expected (display E) or unexpected (display H), resulting in 6 conditions. C) A single trial of the familiarity
judgment task. Four displays were presented sequentially. The first 3 displays were always familiar and could predict the next, lasting 500 ms each. The
fourth display (the target) appeared for 50 ms, followed by a 50 ms mask. Each trial ends with a 1,000–3,000 ms ITI. Participants’ task was to categorize
if the target display was a familiar or novel display. In this example, the target is a novel (shuffled) display. D) A single trial of the object oddball task.
Four displays were presented sequentially for 500 ms each, ending with a 4,000–6,000 ms ITI. The first 3 displays were always familiar and predictable.
Participants’ task was to detect an inverted object in the target display.

are sensitive to statistical irregularities in stimuli. Expectation
suppression refers to a reduction in neural activity that typically
follows the presentation of an input that is expected compared to
the same input when it is not expected (Summerfield et al. 2008;
Egner et al. 2010; Kaposvari et al. 2018; Richter et al. 2018).

We hypothesized that if temporal predictions rely on a high-
level representation that retains information about spatial
structure, we would only observe expectation suppression when
comparing expected and unexpected “familiar” displays. Addi-
tionally, if expectation suppression is locally induced by each
object, regardless of its spatial context, we would observe
expectation suppression for “mixed” displays as well. Specifically,
we expected to observe these suppression effects for the expected
compared to unexpected “individual items” within the “mixed”
displays. Finally, if the observer’s temporal expectations only
reflect the object identity, we would anticipate observing a
similar level of expectation suppression effects when comparing
expected and unexpected conditions in “familiar” and “shuffled”
displays.

To preview the results, we found that participants only
showed a behavioral advantage of temporal regularities when the
expected objects were arranged within the learned (“familiar”)
displays. Additionally, we only observed activity suppression for
temporally expected displays in lateral occipital cortex (LOC) for
the previously learned displays but not for rearranged (“mixed”
and “shuffled”) displays. Importantly, no expectation suppression
was observed for temporally expected compared to unexpected
individual objects when these objects were no longer part of a
learned display. Overall, our findings suggest that expectations
for future object sets reflect the higher-level spatial structure in
which objects are encompassed.

Materials and methods
Preregistration and data availability
The current study was preregistered at Open Science Framework
before any data were acquired. The preregistration form is avail-
able at DOI 10.17605/OSF.IO/8QCDX. All procedures in the prereg-
istration document were followed unless specified otherwise in
the sections below. All data and code are openly available at the
Donders Institute for Brain, Cognition and Behaviour repository
(https://data.donders.ru.nl/).

Participants and data exclusion
Thirty-five healthy human participants were recruited through
the Radboud Research Participation System and received mon-
etary compensation. One participant was excluded because of
excessive head motion during scanning. All remaining partici-
pants (n = 34, 27 females, 1 left-handed, age = 24.2 ± 4.4 years) were
included in all analyses, which is in line with our preregistered
goal to achieve a sample size of n = 34 to detect an effect size of
Cohen’s d ≥ 0.5 with 80% power using a 2-tailed within-subjects
t-test. This study was approved by the local ethics committee
(CMO Arnhem-Nijmegen, Radboud University Medical Center).
Informed written consent was obtained before the experiment.
All participants were prescreened for MRI compatibility and had
normal or corrected-to-normal vision.

Stimuli
Stimuli were presented using PsychToolbox (Brainard 1997;
Pelli 1997; Kleiner et al. 2007) running on MATLAB R2017b
(The MathWorks, Natick, MA, United States). A subset of 32
natural object stimuli were used in the current study taken from
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Richter et al. (2018), which were adapted from Brady et al. (2008).
The 32 object images were randomly assigned to 8 groups for
each participant (4 objects per group). These 8 groups were then
arranged sequentially so that each group temporally predicts the
next group (see Fig. 1A). The 4 object images (4◦ × 4◦) forming
each group were positioned at the corners of a squared template
(6◦ × 6◦), centered on the middle of the screen. We employed 3
types of displays to manipulate the spatial relationships between
co-occurring objects: familiar, mixed, and shuffled (see Fig. 1B).
In the familiar display, the 4 object images were positioned in
the same spatial arrangement as in most of the presentations.
In the mixed display, 2 objects from the familiar display were
randomly replaced by objects from different familiar displays,
with the object positions remaining unaltered. In the shuffled
display, the 4 objects were identical to those in the familiar
display, but their positions were shuffled. Importantly, these
3 display types could either be temporally predictable based
on the preceding display or unpredictable. For example, as
illustrated in Fig. 1B, the display following the previous display
D could be either expected (display E) or unexpected (display
H). In the familiar condition, the entire display could either be
temporally expected or unexpected. In the mixed condition,
half of the objects could either be temporally expected or
unexpected (e.g. E1 and E3 were expected, while H1 and H3
were unexpected), and the other half is always unexpected. In
the shuffled condition, the identities of all objects could either
be temporally expected or unexpected regardless of their spatial
structure. These manipulations enabled us to investigate whether
the effects of temporal expectation are generated by higher-
order representations that integrate information about both
object identities and their spatial relationships by comparing the
temporally expected and unexpected conditions within all 3 types
of spatial displays. All object stimuli were presented in full color
on a midgray background, with a centered fixation point (0.5◦

visual angle in size). The fixation point was formed by a bulls-
eye combined with a crosshair to improve stable fixation (Thaler
et al. 2013). For the behavioral training and testing, stimuli were
presented on an LCD screen (BenQ XL2420T, 1,920 × 1,080 pixel
resolution, 60 Hz refresh rate). For the MRI scanning, stimuli were
rear-projected on an MRI-compatible screen using EIKI LC XL100
beamer (resolution: 1,024 × 768; refresh rate: 60 Hz), which was
visible through an adjustable mirror.

Procedure and design
The experiment consisted of 2 sessions over 2 consecutive days.
The first day consisted of a behavioral session, including a training
and a familiarity judgment task. On the second day, participants
underwent an MRI session, including an object oddball task and a
functional localizer (also referred to as fixation brightness task).
For each participant, the same stimuli groups were used through-
out the different tasks.

Training
The aim of the training was to allow the participants to explicitly
learn the scene-like displays and to implicitly learn the temporal
sequence. The training consisted of 2 parts.

First, we familiarized the participants with 8 sequentially pre-
sented displays of objects (familiar displays) without assigning
any task. These 8 familiar displays and sequential orders were
randomly generated for each participant. Participants were not
informed about the presence of any temporal statistical regular-
ities. The task only required them to examine each display and
move on to the next one with a key press in their own time.

These displays were presented in sequential order and repeated
consecutively, resulting in 200 trials in total, lasting from 15 to
30 min depending on participants’ speed.

Second, we trained participants to explicitly recognize the
familiar displays and differentiate them from novel ones (i.e.
mixed and shuffled). We presented the familiar displays in the
same sequential order as in the first part of the training, but we
introduced a 13.33% chance to show a novel display instead of
the familiar one: In some cases, we randomly replaced 2 objects
within the display by 2 other objects from another 2 displays
(mixed display); while in other cases, we randomly shuffled the
position of 4 objects within a familiar display (shuffled display).
Participants were instructed to indicate whether the display was
familiar or novel using 2 alternative keys. After each catch trial
(novel display), we restarted the sequence at a random starting
point. Feedback on behavioral accuracy was provided at the end
of each trial by changing the color of the fixation point to green
(correct) or red (incorrect) depending on button responses. There
were 900 trials split into 5 runs of equal length, which lasted
approximately 40 min.

Familiarity judgment task
The training tasks were followed by a familiarity judgment task to
test whether the participants had implicitly learned the temporal
sequence and used it to form expectations of upcoming stimuli.
In each trial, 4 displays were presented sequentially on the screen.
The first 3 displays were always familiar, lasting for 500 ms each
and always following the temporal sequence presented during
the training phase, while the last display was visible for only
50 ms and followed by a phase-scrambled mask that was also
presented for 50 ms (see Fig. 1C). Such a short presentation time
and the mask were used to prevent a ceiling effect in accuracy
and encourage the reliance on internal predictive processes. After
each trial, there was an intertrial interval of 1,000–3,000 ms.
During the experiment, the first 2 displays were always predictive
of the identity of the next, allowing temporal expectations to
be fulfilled. This minimized the risk of unlearning the suppos-
edly learned temporal sequence. Importantly, the fourth and last
displays could be manipulated in the spatial (familiar, mixed,
and shuffled) and temporal dimensions (expected or unexpected
in time), resulting in a 3 × 2 design (see Fig. 1B). In order to
avoid repetition suppression effects in the mixed display trials,
we pseudorandomized the selection of the 2 novel objects pre-
sented within the mixed display target to ensure that these were
never repeated within the same trial sequence. The participant’s
task was to indicate whether the fourth display was familiar
(as presented in the training task) or novel (mixed or shuffled
displays). The number of familiar and novel targets was balanced
with respect to button mappings (i.e. half of the targets were
familiar and the other half were novel). The trials of the familiar
responses were further divided into expected familiar (following
the temporal sequence) and unexpected familiar displays, with
37.5% and 12.5% conditional probabilities, respectively. The higher
probability for expected familiar display was used to support
the implicit learning of the temporal sequence. The trials of
novel responses were divided equally into 4 conditions with a
probability of 12.5% each, with spatial (mixed and shuffled) and
temporal (expected and unexpected) manipulation. Participants
had 2 s after the onset of the last display to report if it was familiar
or novel. Feedback on behavioral accuracy (percentage correct)
was provided at the end of each run. In the next trial, the sequence
was restarted with a random familiar starting-display. There were
240 trials for the expected familiar condition and 80 trials for each
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of the other conditions, resulting in 640 trials in total. All types of
trials were presented in a pseudorandomized order and split into
8 runs that lasted approximately 10 min each.

Object oddball task
On the second day, participants performed an object oddball task
in the MR scanner. During each trial, 4 displays were presented
sequentially for 500 ms each, with an intertrial interval of 4,000–
6,000 ms (see Fig. 1D). Similar to the familiarity judgment task, the
first 3 displays were always familiar and presented sequentially
to give rise to temporal expectations, while the last display could
be any type of spatial display (familiar, mixed, or shuffled) or
temporal expectation (expected or unexpected). The participant’s
task was to press a button as soon as they detected an inverted
object in the last display (12.5% of trials) while maintaining their
eyes on the fixation point. Due to the introduction of the oddball
trials, the conditional probability of familiar expected displays
was raised to 43.75%, while the probabilities of other conditions
(familiar unexpected, mixed, and shuffled displays) were reduced
to 8.75%. For each trial, the temporal sequence of displays was
restarted randomly. No feedback was provided during the task.
There were 320 trials split into 4 runs, lasting approximately
50 min in total. The trial order was pseudorandomized. At the
beginning, participants familiarized themselves with the task via
a brief practice lasting ∼5 min.

Functional localizer
After finishing the object oddball task, participants underwent a
functional localizer. We aimed to identify those voxels overlapping
with early visual cortex (V1), object-selective LOC, and scene-
selective parahippocampal place area (PPA). We presented both
single objects and displays using the same object images from the
previous task. The 2 types of localizers were used to inspect neural
activity at the individual object and display level, respectively. The
task consisted of 3 runs in a block design. In the first 2 runs, each
run included 32 stimulus blocks and 8 null-event blocks. During
the stimuli block, each of 4 objects from a familiar display was
present alone and flashed at 2 Hz (250 ms on, 250 ms off) for
11 s, while during the null-event block, only the fixation dot was
presented for 11 s. In each run, each of 4 objects from 1 familiar
display was present once. In total, there were 80 blocks within 2
runs per participant.

The third run was identical in structure, but instead of sin-
gle objects, we showed the 3 types of displays to select voxels
responding to displays: familiar, shuffled, and phase-scrambled.
The familiar stimuli were the 8 familiar displays used in the
previous tasks, while the shuffled stimuli were 8 randomly chosen
shuffled displays. To remove stimulus unspecific activation for
the LOC localizer, we additionally included displays with phase-
scrambled objects. There were 16 blocks for each type of display
and 8 null-event blocks, resulting in 56 blocks in total. The order of
blocks was randomized. For all runs, participants were instructed
to fixate their eyes on the fixation point and respond by pressing
the button whenever the fixation point dimmed in brightness.

fMRI data acquisition
Functional and anatomical images were collected on a 3T
Skyra MRI system (Siemens) using a 32-channel head coil.
Functional images were acquired using a whole-brain T2∗-
weighted multiband-6 sequence (TR/TE = 1,000/34 ms, 66 slices,
voxel size = 2 mm isotropic, 60◦ flip angle, A/P phase encoding
direction). Anatomical images were acquired with a T1-weighted

MP-RAGE (GRAPPA acceleration factor = 2, TR/TE = 2,300/3.03 ms,
voxel size = 1 mm isotropic, 8◦ flip angle).

fMRI data preprocessing
fMRI data preprocessing was performed using FSL 5.0.9 (FMRIB
Software Library; Oxford, United Kingdom; www.fmrib.ox.ac.uk/
fsl; RRID:SCR_002823). The preprocessing pipeline included brain
extraction, motion correction, temporal high-pass filtering (128 s),
and spatial smoothing (Gaussian kernel with 5 mm FWHM). Func-
tional images were registered to the anatomical image using
boundary-based registration as implemented in FLIRT and were
subsequently normalized to the MNI152 T1 2 mm template brain
using linear registration with 12◦ of freedom). For every run, the
first 8 volumes were discarded to allow for signal stabilization.

Region of interest (ROI) definition
To examine the expectation effects throughout the visual hier-
archy, we defined 3 ROIs: V1, object-selective LOC, and scene-
selective PPA for each participant. We used the preregistered V1
and LOC to investigate activity modulations by expectation at
the low-level (feature) and object-selective regions, whereas the
nonpreregistered localizer for PPA allowed us to further exam-
ine potential activity modulations by expectation in a scene-
selective region. For V1, Freesurfer 6.0 (General Hospital Corpo-
ration, Boston, MA, United States, RRID:SCR_001847) was used
to extract labels (left and right) per participant based on their
anatomical image, which were transformed to native space using
mri_label2vol and were combined into a bilateral mask. To select
voxels that maximally responded to the displays, we modeled
the third run of the functional localizer using a General Linear
Model (GLM) performed in FSL FEAT. We modeled the familiar,
shuffled, phase-scrambled stimuli, and null-events with corre-
sponding duration (11 s). First-order temporal derivatives and
motion regressors were added as nuisance regressors. To define
the object-selective LOC and scene-selective PPA ROIs, we used
the bilateral masks from Julian et al. (2012). The obtained bilateral
masks were transformed to native space and were then used as
spatial constraints to select the 200 more responsive voxels (with
highest z-statistics) based on the contrast of interest (familiar
+ shuffled + phase-scrambled—null-trial × 3). We contrasted
“familiar + shuffled – phase-scrambled × 2” to identify the LOC
voxels more responsive to intact compared with phase-scrambles
objects and contrasted “familiar – phase-scrambled” to identify
the PPA voxels more responsive to “scenes” (here defined as
familiar displays). As preregistered, we also generated the LOC
anatomical mask from the Harvard-Oxford cortical atlas, but to
keep it consistent with the PPA mask, we report our results using
Julian et al.’s (2012) LOC mask. We replicated similar results using
the Julian et al.’s and the Harvard-Oxford cortical atlas LOC masks
(see Fig. S1).

In accordance with our preregistered exploratory analysis, we
also obtained the ROIs of individual objects in V1 and LOC to
explore how expectations between the expected and unexpected
objects within mixed displays modulated the BOLD amplitude. To
do so, we carried out an additional GLM analysis with the first 2
runs of the functional localizer, where we modeled the 4 individ-
ual object positions (upper left, upper right, lower left, and lower
right) and null-event with an 11 s duration as regressors. First-
order temporal derivatives and motion regressors were added as
nuisance regressors.

Since any 2 objects within a mixed display can be expected
items, there are a total of 6 possible object pairs (upper, lower,
left, right, and both diagonals). To generate the V1 masks for each
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of these 6 possible object pairs, we used GLMs contrasting any 2
objects minus the other 2 and selecting the most active 100 voxels.
For object-selective LOC, we used the conjunction contrast of
object pairs (object localizer) and intact minus scrambled objects
(display localizer). We first selected the voxels more activated by
intact objects compared with phase-scrambles, using the same
method mentioned before. Then, these voxels were further con-
strained to 100 voxels, resulting in 6 ROIs for object pairs in LOC.
As a robustness check for the ROI size, we additionally repeated all
ROI analyses with ROI sizes ranging from 50 to 300 voxels in steps
of 50 to exclude the possibility of arbitrarily chosen mask size.

Behavioral data analysis
For the familiarity judgment task, we compared the percentage of
images rated as familiar (familiarity rate [FR]) and mean reaction
time (RT) for all participants between conditions. We defined the
FR as the number of familiar responses divided by the number
of trials per condition. The data were averaged across trials per
participant and were submitted to a 3 × 2 repeated measures
ANOVA (RM ANOVA) with spatial display (familiar, mixed, and
shuffled) and temporal expectation (expected or unexpected) as
factors for FR and RT, respectively. We then used paired t-tests
for the planned main effects analyses of the difference between
expected and unexpected within each spatial display. For RT
analysis, the trials whose RTs exceeded 3 MAD of the median or
were <200 ms were discarded. The partial eta-squared (η2) and
Cohen’s dz were calculated as effect size for the RM ANOVA and
paired t-test, respectively. All standard errors of the mean (SEM)
shown in the present paper were calculated as the within-subject
normalized SEM (Cousineau 2005).

fMRI data analysis
We modeled BOLD signal responses to the different experimental
conditions by voxel-wise fitting GLMs to each run’s data and
participant using FSL FEAT. For the object oddball task, 6 experi-
mental conditions (familiar expected, familiar unexpected, mixed
expected, mixed unexpected, shuffled expected, and shuffled
unexpected) and the target trials (in which an upside-down object
occurred) were modeled with 2 s duration as regressors. In object-
level ROI analyses, we further modeled 6 possible paired positions
of expected objects (upper, lower, left, right, and diagonal) within
mixed displays, resulting in 12 regressors for both temporally
expected and unexpected conditions. In addition, nuisance regres-
sors were added for the first-order temporal derivatives for all
modeled events and for the 6 motion parameters (FSL’s standard
set of motion parameters). Data were combined across runs using
FSL’s fixed-effects analysis.

We carried out the group-level whole-brain analyses to
characterize the spatial and temporal expectation suppression
pattern across the brain. FSL’s mixed effects analysis (FLAME 1)
was used to combine data across participants. We also performed
multiple-comparison correction through nonparametric tests
(5,000 permutations) using the randomize function of the FSL. The
statistical significance was assessed using the obtained corrected
P-values. In the object oddball task, we used the contrasts
“expected and unexpected shuffled - expected and unexpected
familiar” and “expected and unexpected mixed - expected
and unexpected familiar” to examine whether expectation
suppression was sensitive to the spatial arrangement of the
objects. We also contrasted “familiar expected–familiar unex-
pected” to test whether expectation suppression also takes place
for temporal sequences. Finally, we explored whether spatial
expectation suppression takes place automatically or depends

on participants paying attention to the objects. To do so, we
contrasted the shuffled displays versus the familiar displays
using the independent data from the third localizer run in which
participants performed a task in which the objects were irrelevant
(i.e. the fixation brightness detection task).

ROI analysis
All reported ROI analyses were performed in each participant’s
native space by averaging all parameter estimates within a ROI
and then comparing conditions within participants. To examine
the main question whether temporal expectation depends on
display, we extracted the parameter estimates for each condition
separately from the whole-brain maps within each ROI (V1, LOC,
and PPA; see Region of interest definition). These mean parameter
estimates were then analyzed employing a 3 × 2 RM ANOVA with
the factors display (familiar, mixed, and shuffled) and tempo-
ral expectation (expected and unexpected) for each ROI. Simple
effects were calculated for temporal expectation in each display
using paired t-tests. Additionally, a Bayesian t-test with a Cauchy
prior width of 0.707 was used to assess any nonsignificant results.

To investigate whether expectations are formed at the object
level, we further conducted ROI analyses using the ROIs of single
objects (see Region of interest definition) in V1 and LOC, respec-
tively. The 4 objects within a mixed display were then averaged
to 2 object pairs in temporally expected and unexpected objects.
The averaged parameter estimates within each ROI were then
in turn subjected to a paired t-test to examine the expectation
suppression for object pairs.

Software
PsychToolbox (Brainard 1997; Pelli 1997; Kleiner et al. 2007)
running on MATLAB R2017b (The MathWorks, RRID:SCR_001622)
was used for stimuli presentation. MRI data preprocessing
and analysis were performed using FSL 5.0.9 (FMRIB Soft-
ware Library; Oxford, United Kingdom; www.fmrib.ox.ac.uk/
fsl; RRID:SCR_002823) and Freesurfer 6.0 (General Hospital
Corporation, RRID:SCR_001847). We used a pipeline (Madan 2015)
based on ITK-SNAP v 3.8.0 (Yushkevich et al. 2006) and ParaView
v. 4.3.1 (Ayachit 2015) to visualize the MRI data in 3D. Python 3.7.4
(Python Software Foundation, RRID:SCR_008394) was used for
data processing with following libraries. NumPy 1.17.2 (van der
Walt et al. 2011) and Pandas 0.25.1 (McKinney 2010) were used
for data handling; Matplotlib 3.1.1 (Hunter 2007) and Nanslice
(Wood 2017, 2020) were used for data visualization. Pingouin 0.2.9
(Vallat, 2018) was used for statistical tests, including RM ANOVA,
paired t-test, and Bayesian analyses.

Results
Temporal expectations facilitate behavior only
for spatially structured arrangements
To examine whether the participants explicitly learned the dis-
plays and used the implicitly learned temporal sequences to
improve their performance in the task, we analyzed FR and RTs
during the object familiarity task. For both FR and RT, there were
significant main effects of display (FR: F(2, 66) = 124.86, P < 0.001,
η2 = 0.79; RT: F(2, 66) = 19.96, P < 0.001, η2 = 0.38), suggesting that
participants performed differently as a function of the presented
display. Indeed, Fig. 2A shows that participants correctly identi-
fied most of the familiar displays as familiar (familiar condition:
∼86% of trials rated as familiar), while they predominantly cate-
gorized the shuffled displays as novel (shuffled condition: ∼17%
of trials rated as familiar). However, the familiarity ratings were

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/13/8300/7099491 by U

niversitaet Stuttgart user on 27 M
ay 2024

https://scicrunch.org/resolver/SCR_001622
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://scicrunch.org/resolver/SCR_002823
https://scicrunch.org/resolver/SCR_001847
https://scicrunch.org/resolver/SCR_008394


Chuyao Yan et al. | 8305

Fig. 2. Behavioral performance from the familiarity judgment task. A) FRs
are higher for familiar than mixed or shuffled displays, indicating that
participants could distinguish these 3 types of displays. The FRs were sig-
nificantly higher for the temporal expected compared with unexpected
displays in familiar display, whereas there were no differences in the
mixed or shuffled displays; B) likewise, the RTs to expected items were
faster than to unexpected items only in the familiar display. Gray dots
represent individual participants. Error bars indicate within-subject SE.
∗∗ P < 0.01, ∗∗∗ P < 0.001.

more variable when object items from different displays were
mixed (∼49% of trials rated as familiar) compared to displays with
the objects spatially shuffled. This indicates that participants’
familiarity reports are highly determined by the correct display,
but not the correct identity of the elements in each display. Briefly,
participants could overall distinguish between familiar and novel
displays, where unfamiliar object locations (shuffled condition)
were easier to identify than unfamiliar mixing of objects between
2 displays.

Furthermore, the significant interactions between display
and temporal sequences (FR: F(2, 66) = 5.66, P = 0.01, η2 = 0.15;
RT: F(2,66) = 4.05, P = 0.02, η2 = 0.11) indicate that the effects of
temporal expectation were modulated by the display. A post hoc
t-test showed that the familiar expected items were more often
correctly rated as familiar compared to the unexpected ones
(t(33) = 3.70, P < 0.001, dz = 0.65). However, no FR differences were
observed in the mixed and shuffled displays (mixed: t(33) = −0.86,
P = 0.39, dz = −0.15; shuffled: t(33) = −0.82, P = 0.42, dz = −0.14).
Bayesian analyses provided moderate evidence in favor of no
differences between expected and unexpected items in the mixed
and shuffled displays (mixed: BF10 = 0.26; shuffled: BF10 = 0.25).
Similarly, participants categorized temporally expected familiar
displays faster than temporally unexpected displays (26 ms
[905 vs. 931 ms]; t(33) = −3.48, P < 0.01, dz = 0.61), whereas no
RT benefit was observed for mixed and shuffled displays
(mixed: t(33) = 0.65, P = 0.52, dz = 0.11; shuffled: t(33) = −1.84, P = 0.08,
dz = −0.32). Bayesian analysis indicated moderate support for the
absence of a difference in mixed display (1,028 vs. 1,021 ms,
BF10 = 0.23) and inconclusive evidence in the shuffled display
(938 vs. 956 ms, BF10 = 0.83). In sum, these results showed that
participants used co-occurrence statistics of multiple objects to
facilitate the recognition of upcoming displays.

Temporal expectation suppression was evident
only in LOC
Next, we investigated whether temporal expectations are formed
at the individual object level or relied on the spatial organization
of the objects within each display. In order to examine how
expectation suppression changes as a function of both display and
temporal expectations, we ran 3 × 2 RM ANOVAs with the factors
display (familiar, mixed, and shuffled) and temporal expectation
(expected and unexpected) on 3 a priori-defined ROIs (Fig. 3A) in
the ventral visual stream.

In all 3 ROIs, we found that BOLD signal to familiar displays
was suppressed compared to BOLD signal to novel displays
(Fig. 3B). This effect was revealed by the main effects of
display (V1: F(2, 66) = 12.43, P < 0.001, η2 = 0.27; LOC: F(2, 66) = 35.56,
P < 0.001, η2 = 0.52; PPA: F(2, 66) = 19.61, P < 0.001, η2 = 0.37). Paired t-
tests confirmed the suppressed neural activity to the familiar
compared with novel displays (all Ps < 0.001). This pattern of
results could be mediated by the formation of the higher-order
representation of the spatial arrangement of object items.

By contrast, the ANOVA neither showed any significant
modulations by temporal expectation (V1: F(1, 33) = 0.81, P = 0.37,
η2 = 0.02; LOC: F(1, 33) = 1.09, P = 0.30, η2 = 0.03; PPA: F(1, 33) = 0.18,
P = 0.67,η2 = 0.01) nor an interaction between display and temporal
expectations in all ROIs (V1: F(2, 66) = 0.15, P = 0.86, η2 < 0.01;
LOC: F(2, 66) = 2.91, P = 0.06, η2 = 0.08; PPA: F(2, 66) = 0.31, P = 0.73,
η2 = 0.01). Due to the interaction being close to our alpha
threshold in LOC, we performed paired t-tests to examine the
modulation by temporal expectation focusing on LOC ROI. We
found that temporal expectation suppression was present when
we compared the temporal expected to unexpected familiar
displays (t(33) = −3.44, P < 0.01, dz = −0.60) but was absent when
the displays were spatially mixed or shuffled (mixed: t(33) = −0.25,
P = 0.81, dz = −0.04; shuffled: t(33) = 0.79, P = 0.44, dz = 0.14). Bayesian
analyses were carried out, showing moderate support for
no expectation suppression in these novel displays (mixed:
BF10 = 0.19; shuffled: BF10 = 0.25).

In a nonpreregistered exploratory analysis, a 2-way RM ANOVA
was performed to test whether the temporal expectation effects
(unexpected minus expected) changed as a function of the factors
ROI (V1, LOC, and PPA) and display (familiar, mixed, and shuf-
fled) across the 3 brain regions (Fig. 3C). A significant interaction
between the 3 brain regions and displays (F(4, 132) = 2.97, P = 0.02,
η2 = 0.08) indicated that expectation suppression was modulated
over brain regions. Further t-test contrasts showed that tem-
poral expectation effects were significantly larger in LOC than
in V1 (t(33) = 2.62, P = 0.01, dz = 0.46) and PPA (t(33) = 3.67, P < 0.001,
dz = 0.64) for the familiar displays, while there was no differ-
ence between the ROIs for the mixed and shuffled displays (all
Ps > 0.10). These results are congruent with our previous analysis
in showing that temporal expectation suppression only occurs for
familiar displays and only in LOC.

In addition to ROI analyses, we also performed a prereg-
istered whole-brain analysis to investigate whether temporal
expectations modulated neural activity outside the a priori-
defined ROIs. Figure 4A shows that, for familiar displays, the
temporally expected versus unexpected displays resulted in
lower brain activity only in the left LOC, while no significant
cluster was observed in mixed or shuffled displays (not shown).
Taken together, these results showed that temporal expectation
suppression was only evident in LOC for the familiar display.

Temporal expectations rely on spatially
structured arrangements
Our previous analyses indicate that temporal expectation effects
are only present for familiar displays, suggesting that participants
predict upcoming displays rather than individual objects. How-
ever, analyzing the BOLD signal modulations evoked by 4 objects
together might obscure the individual contributions of the locally
expected and unexpected objects in the mixed displays. For exam-
ple, it could be that, whereas the 2 locally expected objects gen-
erated strong expectation suppression, the 2 unexpected items
produced the same effect but in the opposite direction (i.e. sur-
prise enhancement), leading on average to a null effect. Hence, to
test whether locally predictable individual objects produce local
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Fig. 3. A) Three anatomically defined masks in the ventral visual pathway overlaid onto a 3D glass brain from a representative participant: early visual
cortex, object-selective LOC, and scene-selective PPA. B) Averaged parameter estimates within V1 (left), LOC (middle), and PPA (right). In all 3 ROIs, BOLD
responses were significantly suppressed to the familiar display. In LOC, the BOLD signals showed significant suppression to the temporal expected items
compared to unexpected in familiar displays. No difference was found between BOLD responses to temporally expected and unexpected items in mixed
or shuffled displays in LOC, or in all 3 types of displays in V1 and PPA. C) Temporal expectation suppression across all brain regions. Error bars indicate
within-subject SE. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

expectation suppression effects, we generated spatially specific
ROIs to separate the BOLD responses to each pair of objects in
the mixed displays depending on whether they were temporally
predictable or unpredictable (Fig. 5A). To distinguish these ROIs
from the ROIs used in previous analyses, the term “paired ROIs”
was used here to refer to the ROIs for object pairs (see Region of
interest definition).

We compared the BOLD responses to temporally expected
and unexpected pairs within the expected mixed displays
(Fig. 5B). Paired t-tests revealed no significant difference between
the temporally expected and unexpected objects within the
expected mixed display (V1: t(33) = 0.92, P = 0.36, dz = 0.16; LOC:
t(33) = 1.55, P = 0.13, dz = 0.27), indicating no detectable object-
specific expectation effect to the partial familiar displays.
Likewise, Bayesian analyses indicated weak-to-mixed evidence
against expectation suppression in the expected mixed displays
(V1: BF10 = 0.27; LOC: BF10 = 0.54). Taken together, these results
suggest that there was no local expectation suppression for
temporally expected compared to unexpected pairs (for validation
see Fig. S2–S4 and Table S1).

Expectation suppression for familiar displays
throughout the ventral visual stream
We performed an exploratory whole-brain analysis to investigate
the neural topography of the spatial expectation suppression

for familiar displays outside the a priori-defined ROIs within
the ventral visual stream. We contrasted BOLD responses to the
familiar displays versus novel displays (mixed and shuffled dis-
plays, respectively). As illustrated in Fig. 4B, the whole-brain anal-
ysis confirmed the ROI analysis, revealing extensive clusters of
suppressed neural activity throughout the visual ventral stream,
including the early visual cortex, bilateral LOC, bilateral fusiform
gyrus, and bilateral PPA. Outside the ventral visual stream, addi-
tional clusters of expectation suppression were observed in mid-
dle and inferior frontal gyri, caudate, insula gyrus, and cingulate
gyrus. Furthermore, in addition to the suppression activity, we
also observed enhanced activity in ventromedial prefrontal cortex
(vmPFC), inferior parietal cortex, posterior cingulate cortex, and
precuneus.

Next, we assessed whether the previously reported suppres-
sion effects for the familiar displays took place automatically
when the objects were unattended. For this analysis, we used
the independent data from the third localizer run. Note that the
displays presented in this localizer run were fully task-irrelevant,
as the participants performed a demanding task at the fixation
point. Thus, it allowed us to investigate whether expectation sup-
pression takes place when the participants had already learned
the spatial associations between the objects, but the displays
were task-irrelevant. We contrasted the familiar displays ver-
sus shuffled displays, and we found similar clusters of spatial
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Fig. 4. Expectation suppression revealed by whole-brain analyses. Color represents the parameter estimates for unexpected minus expected displays on
the MIN 152 2 mm template brain: Red clusters represent increased activity (compared to the expected display), while blue clusters represent decreased
activity (compared to the expected display). Opacity indicates the z-statistics of the contrasts. Black contours outline statistically significant clusters,
associated z-statistics were shown as black lines in the color bars. A) Temporal expectation suppression for the expected compared to unexpected
familiar displays. The significant clusters were in the left LOC; B) spatial expectation suppression for the familiar compared to novel displays. When
participants attended to the objects in the object oddball task (upper and middle rows), the significant clusters were present in the visual ventral stream
(early visual cortex, bilateral LOC, bilateral fusiform gyrus, and bilateral PPA), middle and inferior frontal gyri, anterior insula, and inferior cingulate
gyrus. When participants attended to the fixation point in the localizer run (lower row), significant clusters were less extensive compared to those of
the oddball task only in the visual ventral stream.

Fig. 5. A) Illustration of the object pairs within expected mixed displays. After presentation of a familiar display labeled with letter D, participants would
expect to see the familiar display E next. In the mixed display conditions, we randomly replaced 2 objects in display E, resulting in an expected mixed
display. Thus, only 2 objects were temporally expected (solid arrows), while the other 2 were unexpected (dashed arrows). B) The BOLD responses to
temporally expected (x-axes) and unexpected (y-axes) object pairs within the expected mixed displays. The dashed line indicates no difference between
the BOLD response to expected and unexpected object pairs. The histograms represent the distribution of deviations from the unity line.

expectation suppression in the early visual cortex, bilateral LOC,
bilateral fusiform gyrus, and bilateral PPA (Fig. 4B, lower row).
However, no significant clusters were observed outside the visual

ventral stream. In summary, our results show that spatial expec-
tation suppression to familiar displays was evident in the ventral
visual stream regardless of whether the stimuli were attended or
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unattended, suggesting that spatial expectations along the ven-
tral visual stream unfold automatically.

Discussion
In the current study, we investigated whether expectations about
upcoming input incorporate global information about the spatial
arrangement of co-occurring objects, or whether expectations are
formed locally for each item present in the visual field. Our results
showed that, after participants learned statistical regularities
to associate objects into spatially structured arrangement as a
higher-level representation, that were presented in fixed temporal
sequences, participants could utilize the learned co-occurrence
statistics of multiple objects to guide their expectations about
upcoming arrangements of objects. This was confirmed by the
behavioral benefits in RTs and discrimination of temporally
expected familiar displays. Moreover, fMRI analyses revealed the
presence of expectation suppression effects to the temporally
expected displays in LOC but only when the displays were familiar.
On the contrary, no expectation suppression was observed
for temporally expected compared to temporally unexpected
individual objects when these objects were no longer part of
a familiar display. These findings suggest that the brain forms
expectations at a global level. Furthermore, we shuffled the
relative positions of objects within a learned display and showed
that temporal expectation represents the associated objects in a
spatially structured unit. In sum, our findings provide evidence
that the construction of temporal expectations is predominantly
driven by a higher-level representation of co-occurring objects
that operates holistically rather than focusing on individual
parts.

Temporal expectations benefit from
co-occurrence statistics of stimuli
Our behavioral data showed that participants were able to differ-
entiate the learned displays from the novel displays (mixed and
shuffled) after training. Surprisingly, mixed displays were more
likely perceived as familiar compared to shuffled displays during
the familiarity judgment task. This suggests that participants
placed more weight on the position of each individual item within
each display as a cue to decide whether a display is familiar or
novel than on the identity of items composing it. An alternative
explanation is that participants may use heuristics during the
familiarity judgment task, for example, they might only examine
1 of the 4 objects to determine if a display is familiar or novel.
In this case, there is a 1 in 2 chance of selecting a familiar item
in mixed displays, resulting in a FR at chance level. However,
if participants only evaluated 1 object across all displays, we
would expect to see no difference in RT between them. By con-
trast, our results showed slower RTs for mixed displays compared
to familiar and shuffled displays, indicating that participants
needed more time to process the mixed displays. Thus, we believe
the lower FR for mixed displays is likely due to the difficulty in
recognizing it.

In general, our results clearly show that participants learned
the temporal regularities and could use it to guide their
expectation of upcoming stimuli. Crucially, the benefit of
temporal expectation was only observed when the objects were
presented as a structured display. Thus, our results suggest
that participants grouped simultaneously presented objects into
displays, which were used to facilitate the processing of the next
display.

Co-occurring objects are represented as a unified
display in space
By taking a quick look at objects in the real world, we can notice
that objects are rarely isolated from each other and therefore
global processing may be especially ecological and efficient. In
this view, the human brain should hold a global representa-
tion of the objects’ spatial structure. In fact, our results showed
that the neural responses to the familiar display in the ventral
visual stream (V1, LOC, and PPA) was reduced compared to the
novel (mixed and shuffled) displays. Notably, these results cannot
be explained by differences in frequency or familiarity, as we
controlled the presentation frequency of individual objects. We
speculate that the differences in BOLD response are due to the
violation of 2 types of regularities for representing co-occurring
objects: co-occurrence statistics, in which certain objects are
more likely to appear together (e.g. keyboard and mouse), and
positional regularities, in which objects tend to appear at typical
locations (e.g. keyboard on the left of a mouse). Therefore, the
enhanced BOLD response to the mixed display compared to the
familiar display indicated the violation of the object identities,
while the enhanced BOLD response to the shuffled display com-
pared to the familiar display indicated the violation of the objects’
positions. Interestingly, we observed larger neural responses to
shuffled than mixed displays in LOC and PPA (Fig. 3B), suggesting
that the shuffled displays were more surprising than the mixed
displays. This is consistent with our behavioral results, where
the shuffled displays were easier to categorize as novel than
the mixed display. These suppression effects in LOC and PPA
may reflect the expectation of the positional properties rather
than the identity properties of co-occurring objects (Epstein 2008;
Hayworth et al. 2011).

Moreover, the whole-brain analyses indicated that the sup-
pressed neural activity for familiar displays involved similar brain
regions as in previously reported expectation suppression for
temporally expected stimuli (Richter et al. 2018; Ferrari et al.
2022). The suppression effects overlapped not only in the ventral
visual stream but also in nonsensory areas, such as inferior
frontal gyrus and anterior insula, revealing that expectations
of spatial and temporal context might rely on similar neural
mechanisms. In addition, we observed stronger BOLD responses
to familiar compared to shuffled displays in several nonsensory
higher-order regions, such as the vmPFC, which play a crucial
role in representing superordinate knowledge structures (Gilboa
and Marlatte 2017). Our findings are also consistent with earlier
research (van Kesteren et al. 2010, 2013; Bein et al. 2014),which has
demonstrated that prior knowledge leads to enhanced activity in
medial prefrontal cortex (mPFC), as well as enhanced connectivity
between the mPFC and visual areas, suggesting that the mPFC
may serve as a potential source of perceptual predictions. Finally,
we found that the suppression effects to the familiar displays were
evident in the ventral visual stream even with attention diverted
from the stimuli by using independent data from the localizer run.
This suggests that the suppression for familiar displays is preat-
tentive and therefore is an automatic process. Taken together, our
results provide evidence that participants were able to exploit the
spatial regularities to represent multiple objects as a structured
unit in space.

Co-occurring objects are predicted in time as a
structural unit
Our visual system needs to constantly predict new objects dealing
with a limited capacity of a finite number of objects at once.
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One strategy to overcome this visual system limitation is to
predict sets of objects at a higher level, representing objects as
a structured unit rather than as individuals (Kaiser et al. 2019).
Our results showed temporal expectation suppression when sets
of objects were represented as wholes, but this was absent when
the objects were represented individually, suggesting that tem-
poral expectations convey global information for sets of objects
instead of separately predicting individual objects. Nevertheless,
our results do not exclude the possibility that the visual system
might predict multiple objects simultaneously and independently
if the object sequences are learned separately from one another
(Rosenthal et al. 2018).

A surprising result is that we only observed expectation sup-
pression for temporally expected displays in LOC but not in V1
or PPA. This may be because LOC is more sensitive to the stimuli
we used in the present study. Besides visual object recognition
(Allen et al. 2012), it has been shown that LOC is also sensitive
to the positions of objects (Gronau et al. 2008; Hayworth et al.
2011) and important in coding the scene-like relations between
multiple objects (Kim and Biederman 2011; Kaiser and Peelen
2018). Another possible explanation for the null expectation effect
in V1 and PPA might be that in addition to temporal expectation,
the neural responses to the familiar spatial displays were also
modulated by their spatial structure. This is confirmed by robust
activity suppression in learned (familiar) compared to novel dis-
plays in all ROIs. Therefore, the strong suppression effects for
spatial displays may have induced a ceiling effect, masking the
temporal expectation effects.

An alternative strategy to represent associated objects at a
higher abstraction level is to represent collections of objects
using ensemble statistics (Ariely 2001; Alvarez and Oliva 2009;
Alvarez 2011). It has been proposed that the visual system can
calculate the statistical summary of a set of objects to provide
a compressed, accurate “gist” representation. For instance, Brady
and Alvarez (2011) found that the remembered size of individual
items in a display was biased toward the mean size of all items
in the display. These findings imply that the visual system might
generate expectations based on these ensemble representations.
Thus, the expectation effects should be observed in the shuffled
display, which contained the same ensemble statistics as the
familiar display. However, our results showed that expectation
suppression was absent when the relative position of objects was
shuffled, suggesting participants predicted a structured but not
ensemble representation. Only ensemble information is not suffi-
cient for activating temporal expectations. This is compatible with
the view that positional regularities play a key role in optimally
representing complex visual scenes (Kaiser et al. 2019).

Conclusion
Most previous research on predictive mechanisms has focused
on investigating temporal expectations of individual objects,
neglecting the more realistic situation where multiple objects
are present in a scene and can be predicted collectively. Here,
we sought to explore this scenario and found that the human
brain generates temporal expectations for co-occurring objects
on a global level. Specifically, when co-occurring objects are
grouped into a scene-like representation, we observed expectation
suppression effects for these scenes, rather than individual
objects, thus revealing that perceptual anticipation operates
predominantly on the global level. These findings have important
implications for our understanding of how humans predict

complex scenes by showing that expectations act upon high-
level representations of the visual input. Such bound multiobject
representations might help to free up processing resources by
reducing information redundancy when the scene is already
known.

Authors’ contributions
CY, BVE, AP-B and FPdL designed research; CY performed experi-
ments; CY and BVE analyzed data; CY and BVE wrote the first draft
of the paper; CY, BVE, AP-B, MVP, and FPdL edited and revised the
paper.

CRediT authors statement
Chuyao Yan (Conceptualization, Data curation, Formal analysis,
Visualization, Writing—original draft, Writing—review & editing),
Benedikt V. Ehinger (Conceptualization, Formal analysis, Writ-
ing—original draft, Writing—review & editing), Alexis Pérez Bel-
lido (Conceptualization, Writing—review & editing), Marius V.
Peelen (Writing—review & editing), and Floris P. de Lange (Con-
ceptualization, Funding acquisition, Writing—review & editing)

Supplementary material
Supplementary material is available at Cerebral Cortex online.

Funding
CY is supported by a grant from the China Scholarship Council
(201708330238). BVE is supported by the Deutsche Forschungs-
gemeinschaft (German Research Foundation) under Germany’s
Excellence Strategy-EXC 2075-390740016. AP-B is supported by
RTI2018-100977-J-I00 from MINECO (Spain). MVP is supported by
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agree-
ment no. 725970). FPdL is supported by a grant from the Horizon
2020 Framework Programme (ERC Starting Grant 678286). The
funders have no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Conflict of interest statement: The authors declare no competing
financial interests.

References
Alvarez GA. Representing multiple objects as an ensemble enhances

visual cognition. Trends Cogn Sci. 2011:15(3):122–131. https://doi.
org/10.1016/j.tics.2011.01.003.

Alvarez GA, Oliva A. Spatial ensemble statistics are efficient
codes that can be represented with reduced attention. Proc
Natl Acad Sci. 2009:106(18):7345–7350. https://doi.org/10.1073/
pnas.0808981106.

Ariely D. Seeing sets: representation by statistical properties. Psychol
Sci. 2001:12(2):157–162. https://doi.org/10.1111/1467-9280.00327.

Ayachit U. The ParaView guide: a parallel visualization application. Kit-
ware, Inc; 2015. ISBN 9781930934306.

Bein O, Reggev N, Maril A. Prior knowledge influences on hip-
pocampus and medial prefrontal cortex interactions in sub-
sequent memory. Neuropsychologia. 2014:64:320–330. https://doi.
org/10.1016/j.neuropsychologia.2014.09.046.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/13/8300/7099491 by U

niversitaet Stuttgart user on 27 M
ay 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad115#supplementary-data
https://doi.org/10.1016/j.tics.2011.01.003
https://doi.org/10.1016/j.tics.2011.01.003
https://doi.org/10.1073/pnas.0808981106
https://doi.org/10.1073/pnas.0808981106
https://doi.org/10.1111/1467-9280.00327
https://doi.org/10.1016/j.neuropsychologia.2014.09.046
https://doi.org/10.1016/j.neuropsychologia.2014.09.046


8310 | Cerebral Cortex, 2023, Vol. 33, No. 13

Biederman I, Mezzanotte RJ, Rabinowitz JC. Scene perception: detect-
ing and judging objects undergoing relational violations. Cogn
Psychol. 1982:14(2):143–177. https://doi.org/10.1016/0010-0285(82)
90007-X.

Boettcher SEP, Stokes MG, Nobre AC, van Ede F. One thing
leads to another: anticipating visual object identity based on
associative-memory templates. J Neurosci. 2020:40(20):4010–4020.
https://doi.org/10.1523/JNEUROSCI.2751-19.2020.

Brady TF, Alvarez GA. Hierarchical encoding in visual
working memory ensemble statistics bias memory for
individual items. Psychol Sci 2011:22(3):384–392. https://doi.
org/10.1177/0956797610397956.

Brady TF, Konkle T, Alvarez GA, Oliva A. Visual long-term mem-
ory has a massive storage capacity for object details. Proc
Natl Acad Sci. 2008:105(38):14325–14329. https://doi.org/10.1073/
pnas.0803390105.

Brainard DH. The psychophysics toolbox. Spat Vis. 1997:10(4):
433–436.

Chun MM, Jiang Y. Top-down attentional guidance based on implicit
learning of visual covariation. Psychol Sci. 1999:10(4):360–365.
https://doi.org/10.1111/1467-9280.00168.

Clark A. Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behav Brain Sci. 2013:36(3):181–204.
https://doi.org/10.1017/S0140525X12000477.

Cousineau D. Confidence intervals in within-subject designs: a sim-
pler solution to Loftus and Masson’s method. Tutor Quant Methods
Psychol. 2005:1(1):42–45.

Egner T, Monti JM, Summerfield C. Expectation and surprise
determine neural population responses in the ventral
visual stream. J Neurosci. 2010:30(49):16601–16608. https://
doi.org/10.1523/JNEUROSCI.2770-10.2010.

Epstein RA. Parahippocampal and retrosplenial contributions to
human spatial navigation. Trends Cogn Sci. 2008:12(10):388–396.
https://doi.org/10.1016/j.tics.2008.07.004.

Ferrari A, Richter D, Lange FP de. Updating contextual sensory expec-
tations for adaptive behavior. J Neurosci. 2022:42(47):8855–8869.
https://doi.org/10.1523/JNEUROSCI.1107-22.2022.

Fiser J, Aslin RN. Unsupervised statistical learning of higher-order
spatial structures from visual scenes. Psychol Sci. 2001:12(6):
499–504. https://doi.org/10.1111/1467-9280.00392.

Fiser J, Aslin RN. Encoding multielement scenes: statistical learning
of visual feature hierarchies. J Exp Psychol Gen. 2005:134:521–537.
https://doi.org/10.1037/0096-3445.134.4.521.

Gilboa A, Marlatte H. Neurobiology of schemas and schema-
mediated memory. Trends Cogn Sci. 2017:21(8):618–631. https://
doi.org/10.1016/j.tics.2017.04.013.

Green C, Hummel JE. Familiar interacting object pairs are per-
ceptually grouped. J Exp Psychol Hum Percept Perform. 2006:32(5):
1107–1119. https://doi.org/10.1037/0096-1523.32.5.1107.

Gronau N, Neta M, Bar M. Integrated contextual representation for
objects’ identities and their locations. J Cogn Neurosci. 2008:20(3):
371–388.

Hayworth KJ, Lescroart MD, Biederman I. Neural encoding of relative
position. J Exp Psychol Hum Percept Perform. 2011:37(4):1032–1050.
https://doi.org/10.1037/a0022338.

Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng.
2007:9(3):90–95. https://doi.org/10.1109/MCSE.2007.55.

Julian JB, Fedorenko E, Webster J, Kanwisher N. An algorithmic
method for functionally defining regions of interest in the ven-
tral visual pathway. NeuroImage. 2012:60(4):2357–2364. https://
doi.org/10.1016/j.neuroimage.2012.02.055.

Kaiser D, Peelen MV. Transformation from independent to inte-
grative coding of multi-object arrangements in human visual

cortex. NeuroImage. 2018:169:334–341. https://doi.org/10.1016/j.
neuroimage.2017.12.065.

Kaiser D, Quek GL, Cichy RM, Peelen MV. Object vision in a
structured world. Trends Cogn Sci. 2019:23(8):672–685. https://doi.
org/10.1016/j.tics.2019.04.013.

Kaposvari P, Kumar S, Vogels R. Statistical learning signals in
macaque inferior temporal cortex. Cereb Cortex. 2018:28(1):
250–266. https://doi.org/10.1093/cercor/bhw374.

Kim JG, Biederman I. Where do objects become scenes? Cereb Cor-
tex (New York, NY). 2011:21(8):1738–1746. https://doi.org/10.1093/
cercor/bhq240.

Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C.
What’s new in psychtoolbox-3. Perception. 2007:36(14):1–16.
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